Wizard Recommends

Opening Bonus Available

US$500 No Deposit Needed

100% + 100 Free Spins
Ask the Wizard #273
Moshe
That is unusual. Said casino probably has no clue what they are doing. For the benefit of other readers, let me review what a match play chip is. These are chips that you match with real money when making a bet. If you win, you are paid on both, and your real money wager is returned. If you lose, you lose both. Nothing happens on a push.
So a match play chip may be used only once on a resolved bet. If the casino allows you to use it on any bet, the proper strategy is to put it on a longshot bet. This is because the cost of not getting the match play back after a win is a lot less on a longshot bet than an evenmoney wager.
The following table shows various bets in three different games and the expected number of units won. For the purposes of the table, it is assumed if the player gets a tie he keeps repeating the same bet until it is resolved. You can see the highest expected value is on a singlenumber bet in roulette at 87% of face value.
Match Play Expected Value
Game  Bet  Pays  Probability  Return 

Baccarat  Banker  1.9  0.506825  0.469792 
Baccarat  Player  2  0.493175  0.479526 
Baccarat  Tie  16  0.095156  0.617651 
Craps  Pass  2  0.492929  0.478788 
Craps  Don't pass  2  0.492987  0.478961 
Craps  Easy hop  30  0.055556  0.722222 
Craps  hard hop  60  0.027778  0.694444 
Roulette  18 numbers  2  0.473684  0.421053 
Roulette  12 numbers  4  0.315789  0.578947 
Roulette  Six numbers  10  0.157895  0.736842 
Roulette  Four numbers  16  0.105263  0.789474 
Roulette  Two numbers  34  0.052632  0.842105 
Roulette  Single number  70  0.026316  0.868421 
"Anonymous" .
APR stands for Annual Percentage Rate. The purpose of it is to equate an interest rate with possible points and compounded monthly to an APY (annual percentage yield), which is an interest rate with no points and compounded annually.
For those who don't know, when you take out a mortgage, the bank often charges a finance fee based on the amount of the mortgage. For each point, the borrower must pay 1% of the mortgage amount to the bank as an additional fee. Sometimes this fee is tacked on to the principal amount.
The APR interest rate is hypothetical. If the borrower negotiated with the lender to increase the interest rate, in exchange for no points, and compound interest annually, then the APR interest rate would result in exactly the same payment. Let's look at an example.
Suppose the borrower wants a loan of $250,000. The bank charges 5.625% interest, compounded monthly, with two points, based on a 30year mortgage. What would be the APR? The finance fee is 2% of $250,000, which equals $5,000. The borrower then asks the bank to add that to the principal, for a loan of $255,000. I won't get into the monthly payment calculation, so take it on faith that it comes to $1,467.92.
Assuming there were no points, an interest were compounded annually, what interest rate would equate to the same monthly payment of $1,467.92 on a loan of $250,000? By trial and error I find an interest rate of 5.9635% and no points and compounded annually results in the same monthly payment of $1,467.92. So, a way to phrase this would be, "A 30year fixed loan at 5.625% interest with two points has an APR of 5.9635%."
Ayecarumba
I have no reason to doubt there is a million dollars under that case. Their older, and much better, display clearly had one million in the form of 100 $10,000 bills. For those unfamiliar with them, $10,000 bills are extremely rare and sell for about ten times that at auction. Another reason I don't doubt they have a million dollars on the premises is every Nevada casino has to have sufficient cash to do business, and I imagine the Nevada Gaming Control Board lets Binion's count the money in that display, as a last resort. Ironically, not having sufficient cash on hand was the reason Binion's was closed down in 2004 ().
To get back to your question, it would take 10,000 $100 bills to make a million dollars. Given that a bill is 6" long and 2.625" high, and a 100bill stack is about 1/2" high, a million dollars would occupy 787.5 cubic inches only. That is just 46% of a cubic foot. You could fit a million dollars in $100 bills in a briefcase easily. So clearly there are some non$100 bills in that case.
Discussion about this in my forum turned up an article with the specifics, from the Aug. 22, 2008 Las Vegas Review Journal. It says that the display has 42,000 $1 bills, 34,400 $20 bills, and 2,700 $100 bills.
This question was raised and discussed in the forum of my companion site .
"Anonymous" .
Before I answer that, let me review recessive disease , which is the case with Cystic Fibrosis (CF). Humans have two copies of each gene, one from the mother and one from the father. When there is a mating, the offspring will randomly one each from the father and mother, resulting in two genes of his/her own.
In the case of CF, it takes two positive genes to be positive. In the case of one positive and one negative gene, the negative one will dominate. In such an event, the person is a carrier, negative for CF, but has a 50% chance of passing on the positive CF gene. Two negative genes will result in being completely clean of CF.
Given that both parents are carriers, here is the probability of each possible outcome for their offspring:
Positive: 0.5×0.5= 0.25
Carrier: 0.5×0.5 + 0.5×0.5 = 0.5
Negative: 0.5×0.5 = 0.25
Given one carrier and one negative parent, here is the probability of each possible outcome for their offspring:
Positive: 0
Carrier: 0.5×1 = 0.5
Negative: 0.5×1 = 0.5
Given two negative parents, the offspring will be negative with 100% chance.
Let's define the probability of the three possible states as:
p = positive
c = carrier
n = negative
Given random parents, let's solve for each after one generation.
p = pr(two carrier parents)×pr(positive given two carrier parents) +
pr(one carrier parent)×pr(positive given one carrier parents) +
pr(zero carrier parents)×pr(positive given two carrier parents) =
c^{2} × 0.25 + 2×c×(1c)×0 + (1c)^{2}×0 = c^{2}/4.
c = pr(two carrier parents)×pr(carrier given two carrier parents) +
pr(one carrier parent)×pr(carrier given one carrier parents) +
pr(zero carrier parents)×pr(carrier given two carrier parents) =
c^{2} × 0.5 + 2×c×(1c)×0.5 + (1c)^{2}×0 = cc^{2}/2.
n = pr(two carrier parents)×pr(negative given two carrier parents) +
pr(one carrier parent)×pr(negative given one carrier parents) +
pr(zero carrier parents)×pr(negative given two carrier parents) =
c^{2} × 0.25 + 2×c×(1c)×0.5 + (1c)^{2}×1 = c^{2}/4  c + 1
So the probability of being a carrier, given not positive is:
(c  c^{2}/2)/ (1  c^{2}/4) =
(4c  2×c^{2})/(4  c^{2}) =
[2c×(2c)] / [(2c)×(2+c)] =
2c/(2+c)
We were given that the carrier rate now is 4%, so in one generation it will be 2×0.04/(2+0.04) = 3.92%.
The following table applies this formula for 100 generations.
Cystic FibrosisCarrier Rate
Generation  Rate 

0  0.040000 
1  0.039216 
2  0.038462 
3  0.037736 
4  0.037037 
5  0.036364 
6  0.035714 
7  0.035088 
8  0.034483 
9  0.033898 
10  0.033333 
11  0.032787 
12  0.032258 
13  0.031746 
14  0.031250 
15  0.030769 
16  0.030303 
17  0.029851 
18  0.029412 
19  0.028986 
20  0.028571 
21  0.028169 
22  0.027778 
23  0.027397 
24  0.027027 
25  0.026667 
26  0.026316 
27  0.025974 
28  0.025641 
29  0.025316 
30  0.025000 
31  0.024691 
32  0.024390 
33  0.024096 
34  0.023810 
35  0.023529 
36  0.023256 
37  0.022989 
38  0.022727 
39  0.022472 
40  0.022222 
41  0.021978 
42  0.021739 
43  0.021505 
44  0.021277 
45  0.021053 
46  0.020833 
47  0.020619 
48  0.020408 
49  0.020202 
50  0.020000 
51  0.019802 
52  0.019608 
53  0.019417 
54  0.019231 
55  0.019048 
56  0.018868 
57  0.018692 
58  0.018519 
59  0.018349 
60  0.018182 
61  0.018018 
62  0.017857 
63  0.017699 
64  0.017544 
65  0.017391 
66  0.017241 
67  0.017094 
68  0.016949 
69  0.016807 
70  0.016667 
71  0.016529 
72  0.016393 
73  0.016260 
74  0.016129 
75  0.016000 
76  0.015873 
77  0.015748 
78  0.015625 
79  0.015504 
80  0.015385 
81  0.015267 
82  0.015152 
83  0.015038 
84  0.014925 
85  0.014815 
86  0.014706 
87  0.014599 
88  0.014493 
89  0.014388 
90  0.014286 
91  0.014184 
92  0.014085 
93  0.013986 
94  0.013889 
95  0.013793 
96  0.013699 
97  0.013605 
98  0.013514 
99  0.013423 
100  0.013333 
Half the current 4% rate is 2%. You can see from the table that that will be achieved in 50 generations. Assuming 30 years per generation, that will take 1,500 years.